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Interleukin-3 (IL-3) and granulocyte/macrophage-colony-stimulating factor (GM-CSF) are

responsible for maintaining survival and stimulating growth of early dormant hematopoietic
progenitor cells (HPC). These cytokines exhibit extensive overlap, with GM-CSF supporting
growth and differentiation of myeloid HPC. A characteristic shared by a diverse group of
leukemogens is the ability to act synergistically with GM-CSF to increase clonogenic response.

Previous studies have revealed that pretreatment of murine HPC with hydroquinone (HO) but not
phenol, catechol, or trans-trans-muconaldehyde results in a selective enhancement of GM-CSF
but not IL-3-mediated clonogenic response. Pretreatment of murine bone marrow cells with
these agents or their metabolites in vitro results in increased numbers of HPC dividing and
forming colonies in response to GM-CSF but not IL-3. The present studies explored the
molecular mechanisms associated with altered cytokine response in early HPC in murine bone
marrow and extended our initial observations in murine bone marrow to human bone marrow

cells. HQ pretreatment of murine HPC did not induce either an up- or a down-regulation of
GM-CSF receptors or any change in receptor affinity. CD34+ cells, which represent between 1
and 5% of human bone marrow, contain virtually all clonogenic stem and HPC. Pretreatment of
CD34+ cells (-95% purity) with HO also results in enhanced clonogenic response with GM-CSF
but not IL-3. These findings suggest that an early step in chemical leukemogenesis may involve
transient alterations in the regulation of cytokine response to GM-CSF. Environ Health
Perspect 1 04(Suppl 6):1247-1250 (1996)
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Introduction
A variety of normal tissues are character-
ized by high rates of cell turnover in which
mature cells are consumed or die. These
cells are continually replaced by others that
are derived from primitive, undifferenti-
ated cells. Cell division represents the most
important inherent source of increased risk
of mutation and chromosomal aberrations
throughout life, and a number of agents
whose major biological effect is to induce
cell proliferation are major risk factors for
specific human cancers (1). Therefore, it is

not surprising that cell maturation and
proliferation in such tissues is highly
ordered so that replication of cells with the
greatest potential for neoplastic transfor-
mation is tightly controlled, and so that
cells undergoing the most rapid turnover
are committed to terminal differentiation
or apoptosis (2). Normal hematopoiesis is
probably the ultimate example of a tightly
regulated process in which cell survival,
differentiation, and proliferation are inex-
tricably linked and controlled by multiple
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growth factors or cytokines that collaborate
to regulate hematopoiesis (3).

The results of a number of studies uti-
lizing a variety of different systems support
the observation that altered response to
hematopoietic cytokines, specifically gran-
ulocyte/macrophage-colony-stimulating
factor (GM-CSF) or interleukin-3 (IL-3),
feature prominently in early events in the
leukemogenic process. Enhanced expres-
sion of GM-CSF or IL-3 results in pro-
found myelodysplastic changes (4-6), and
altered clonogenic response to GM-CSF is
a frequent early observation in the develop-
ment of acute myelogenous leukemia
(AML) (7,8). Moreover, inhalation expo-
sure of mice to benzene enhances clono-
genic response to GM-CSF (9,10), and
chronic exposure to high concentrations
induces a persistent myeloproliferative dis-
order (10,11). These specific alterations are
most likely due to hydroquinone (HQ),
which selectively enhances clonogenic
response to GM-CSF in murine bone mar-
row cells (12,13). Our work has focused
on understanding the relationship between
altered response of primitive bone marrow
cells to cytokines involved in proliferation
and survival and early events in leukemo-
genesis. These studies have revealed that
the potential to act synergistically with
GM-CSF to induce a clonogenic response
in primitive HPC is a characteristic shared
by a variety of leukemogenic agents
(12,13). Pretreatment of murine bone
marrow cells with these agents or their
metabolites in vitro results in increased
numbers of HPC dividing and forming
colonies in response to GM-CSF but not
IL-3. The present studies were designed to
evaluate potential molecular mechanisms
associated with altered cytokine response in
early HPC in murine bone marrow and to
extend our initial observations in mice to
human bone marrow cells.

Materials and Methods
Reagents. Murine recombinant (r)GM-CSF
(5 x 107 U/mg) and human rGM-CSF
(1.25 x 107 U/mg), recombinant stem cell
factor (SCF) (105 U/mg), and rIL-3 (2 x 107
U/mg) were generous gifts from Immunex
(Seattle, WA). Modified Iscove's medium,
RPMI-1640, L-glutamine, penicillin/strep-
tomycin solution, and phosphate-buffered
saline (PBS) were purchased from Life
Technology (Grand Island, NY). Fetal
bovine serum (FBS) was supplied by
Gemini Bioproducts (Calabasas, CA).
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Lympholyte-M was obtained from
Accurate Scientific (Westbury, NY).
Histopaque-1077, methyl cellulose, bovine
serum albumin (BSA), HQ, 2-mercap-
toethanol, dibutyl phthalate, and bis(2-eth-
ylhexyl)phthalate were purchased from
Sigma Chemical Company (St. Louis,
MO). The MiniMACS separation system
and CD34 cell isolation kit were supplied
by Miltenyi Biotech Inc. (Sunnyvale, CA).
Fluorescein isothiocyanate (FITC) conju-
gated anti-CD34 (HPCA-2) was purchased
from Becton Dickinson (San Jose, CA).
Enzymobead radioiodination reagent was
obtained from Bio-Rad (Melville, NY).
I125 was purchased from Amersham
(Arlington Heights, IL).

Animals. Four-week-old male C57BL/6J
mice were obtained from The Jackson
Laboratory (Bar Harbor, ME). Animals were
acclimated for 2 weeks prior to use and were
housed 10 to a cage in sterile chambers with
filter tops. Mice were allowed autoclaved
food (3000, Agway, Syracuse, NY) and ster-
ilized water ad libitum. All procedures per-
formed on mice were approved by the
University of Colorado Health Sciences
Center's Animal Care and Use Committee.

Human Bone Marrow. Human bone
marrow was obtained with informed
consent from normal adult volunteers by
aspiration from the posterior iliac crest.
These studies were conducted under a
protocol approved by the University of
Colorado Health Sciences Center's Internal
Review Board.

Mouse Bone Marrow Cell Preparation.
Mononuclear nonadherent bone marrow
cells were harvested from femora as previ-
ously described (12). Briefly, animals were
killed by cervical dislocation and bone mar-
row was flushed from femora with PBS con-
taining 1% BSA using a 5-ml syringe with a
22-gauge needle. A single cell suspension
was obtained using a Pasteur pipet, which
was then purified over Lympholyte-M. The
recovered buffy layer was removed and
washed twice in PBS/BSA. Nonadherent
cells were obtained by incubating the cells
at 2 x 106/ml in culture flasks for 1 hr at
37°C in PBS/BSA.

Human Bone Marrow CellPreparatio
Mononuclear cells were isolated by using
Histopaque-1077 per manufacturer's
instructions. CD34+ cells were purified
from the mononuclear cells by using the
MiniMACS purification system according
to manufacturer's instructions. The CD34
purity was determined by labeling the cells
with FITC-conjugated anti-CD34 mono-
clonal antibody (HPCA-2) specific for a

CD34 epitope distinct from that used in
the purification process (QBEND-10) fol-
lowed by flow cytometry analysis (Epics
752, Coulter Electronics, Hialeah, FL).

Chemical Exposures. Cells were incu-
bated with PBS or HQ dissolved in PBS
for 30 min at 37°C, washed in Iscove's
medium containing 10% FBS and used in
the colony-forming units (CFU) assay.

CFUAssay. The CFU assay was per-
formed as previously described (12).
Briefly, bone marrow cells were plated in
35-mm culture dishes at a concentration of
1 to 5 x 104 cells/ml in 1 ml modified
Iscove's medium containing 10 to 20%
FBS, 100 mg/ml streptomycin, 100 U/ml
penicillin, 2 mM L-glutamine, 50 mM 2-
mercaptoethanol, 1.2% (wt/vol) methyl
cellulose, and recombinant cytokines. Each
cytokine was used at concentrations experi-
mentally determined to produce maximal
colony formation. All cultures were main-
tained at 37°C in 5% CO2. Colonies con-
sisting of 30 or more cells were scored on
day 14. Five plates were scored for each
in vitro treatment group and results
expressed as the mean ± 1 SEM. Signifi-
cant differences (p<0.05) between pre-
treated and control groups were determined
using the Student's t-test. Statistics were
calculated using Excel 4.0 (Microsoft
Corp., Redmond, WA).

GM-CSF Receptor Binding. I1 25_
labeled murine GM-CSF was prepared
using Enzymobead radioiodination reagent
as modified by Park et al. (14). Binding
assays were carried out using a phthalate oil
separation method (15) as performed by
Park et al. (14), and association/dissocia-
tion kinetics were analyzed as previously
described (16,17). Specific activity of
each preparation was determined by self-
displacement analysis (18).

Results
Human HPC Purification
Representative sampling of murine bone
marrow cells is simplified by the ability to
evacuate and collect all the cells contained
in the long bones of a mouse. Moreover,
bone marrow samples obtained from syn-
geneic mice maintained under controlled
conditions are, for all intents and purposes,
identical. In contrast, human bone marrow
samples are collected by aspiration of a rela-
tively small volume from the iliac crest of
normal human volunteers who are geneti-
cally unrelated. To assure as uniform and
standardized preparations ofhuman HPC as
possible, an isolation procedure was utilized

based on magnetic bead gradient puri-
fication of CD34+ cells (19). The CD34+
cell population contains all clonogenic cells
identified in human bone marrow, includ-
ing both long-term and short-term repopu-
lating cells (20) and is markedly enriched
for primitive HPC. Using this method, the
purity of CD34+ routinely obtained from
unrelated volunteers is greater than 91%
and often approaches 99% (Table 1). The
flow cytometric distribution of the CD34
marker in purified human bone marrow
cells is illustrated in Figure 1.

Effects ofHQ Pretreatment on
Human Bone Marrow Cells
Similar to previously reported results in
murine bone marrow, HPC normally
unresponsive to rGM-CSF are induced by
HQ pretreatment to selectively respond to
human rGM-CSF and not human rIL-3
(Figure 2). HQ pretreatment at 10-6 M
induces a 291% increase in clonal response
to rGM-CSF. Similar to results obtained
in mice, HQ pretreatment of human HPC
does not mimic SCF, since cells grown in
the presence of rGM-CSF + rSCF are also

Table 1. Purification of CD34+ cells from human bone
marrow.

% of
Sample % CD34+ Yield, x 1OE6 starting cellsa

A5.0 96.5 1.05 1.6
A5.1 90.6 0.32 0.8
A5.2 93.3 1.20 2.8
A5.3 91.4 0.27 1.3
A5.4 94.2 2.55 8.3
A5.5 98.3 3.14 8.0
A5.6 97.6 0.80 3.1

"Percent of starting cells is determined by the number
of purified CD34+ cells divided by the starting number
of cells labeled with anti-CD34 microbeads.
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Figure 1. CD34 expression on Ficoll purified (---) and
CD34 purified (-) human bone marrow. The purified
cells are 98.05% positive for CD34.
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Figure 2. Effects of HQ pretreatment of CD34+ human
bone marrow cells on recombinant (A) GM-CSF with
or without SCF and (B) IL-3 stimulated colony forma-
tion. (A) *, rGM-CSF at 5 ng/ml; *, rGM-CSF at 5
ng/ml + rSCF at 25 ng/ml; (B) *, IL-3 at 10 ng/ml. Error
bars indicate 1 SEM for five cultures and are omitted
when they are smaller than the symbol. Asterisk indi-
cates significant increase compared to controls treated
with PBS (p < 0.05).

recruited to respond by HQ pretreatment
independent of rSCF.

Studies on the Role ofAltered
GM-CSF Receptor Expression
A series of experiments was conducted to
evaluate potential mechanisms associated
with HQ-induced enhancement of clono-
genic response in murine bone marrow
cells. Previous experiments utilizing
murine HPC essentially depleted of stro-
mal, and lineage-committed bone marrow
cells suggest that the observed synergistic
response to rGM-CSF represents an
intrinsic effect on responding HPC and is
independent of altered production of
cytokines by accessory cell populations
(12,13). Because HQ-induced synergism is
specific for GM-CSF, the possibility that
HQ pretreatment results in altered
GM-CSF receptor expression was evalu-
ated. We measured 280 high- and 1700
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Figure 3. Binding isotherm (A) and Scatchard plot (B)
of GM-CSF binding to HQ- and PBS-treated murine
bone marrow cells.

low-affinity sites, respectively, for an
enriched population of murine HPC
that compares favorably with previously
reported ranges for high- (10-100) and low-
(300-500) affinity sites/cell in unfraction-
ated bone marrow cells (21). Nonspecific
binding occurred linearly with increasing
concentration of 1251-rGM-CSF and was
in every case < 3% of the total disintegra-
tions per minute added. The results of these
experiments presented in Figure 3 indicate
that HQ pretreatment has no detectable
influence on high-affinity GM-CSF recep-
tors, suggesting that the increased recruit-
ment of GM-CSF responsive myeloid
progenitor cells by HQ pretreatment is not
the result of either an up- or a down-regu-
lation of GM-CSF receptors or changes in
receptor-ligand affinity.

Discussion
We have demonstrated that clonogenic
response in selected populations of HPC is
subject to chemical influence and that
chemical/drug pretreatment can synergize
with growth factors, resulting in clonogenic
recruitment of subpopulations of murine

and human HPC (12,13). Hematopoiesis
is characterized by a hierarchy of progeni-
tor cell types with specific genetic reper-
toires and phenotypic characteristics that
define their capacity with respect to sur-
vival, self-renewal proliferation, and differ-
entiation. It is generally recognized that
proliferation of committed multi- or sin-
gle-lineage HPC is controlled by multiple
growth factors with overlapping specificity,
and a variety of positive and negative con-
trol mechanisms have been described that
are required to maintain cell homeostasis
in this system (22). It is likely that altered
clonogenic response to cytokines involves
alterations in molecular signals associated
with cell survival, proliferation or differenti-
ation. Nevertheless, it is not known whether
the cellular transduction mechanism(s) gov-
erning these processes are subject to indi-
vidual environmental manipulation. For
HQ, synergism appears to be due to an
intrinsic increase of additional clones of
cells that are responsive to the growth factor
rather than to changes in the rate of cell pro-
liferation (12). The mechanism of chemical-
induced synergism does not likely involve
secondary cytokine production because
a) synergism is highest in purified prepara-
tions of HPC, b) no colonies are formed in
the absence of exogenous cytokine, and
c) synergy is specific for GM-CSF. In con-
trast, comitogenic cytokines synergize with
both IL-3 and GM-CSF and in certain
cases granulocyte colony-stimulating factor
and macrophage colony-stimulating factor.
In the case of HQ, synergism is specific for
GM-CSF and is optimal following pre-
treatment for as little as 30 min. A priori,
these results suggest an event involving
modulation of cytokine receptor expression:
altered signal transduction or modulation of
the fate (i.e., survival) of responding cells.
Pretreatment of murine bone marrow cells
with HQ under conditions that result in
enhanced clonal response to rGM-CSF is
not accompanied by alterations in GM-CSF
receptor expression as measured by changes
in either the number of affinity or surface
receptor sites. Analogous experiments with
monoclonal antibodies specific for IL-3
receptor-associated proteins induce effects
similar to HQ (23). These antibodies pro-
duced no response alone, showed synergy
with GM-CSF, and did not affect the IL-3
response of HPC. In studies using the
same system and the 32Dc13 cell line, HQ
did not show any capacity to generate a
partial IL-3 signal (data not shown). In
addition, using neutralizing antibodies to
murine IL-3, we ruled out the possibility
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that HQ is causing a release of IL-3 (data
not shown). The most plausible explana-
tion based on available data is that HQ
activates a mechanism involving one or
more secondary signals that are not sufficient
to induce HPC into cycle but will synergize
with GM-CSF to do so.

In a rapidly dividing tissue such as
bone marrow in which control of stem and

progenitor cell proliferation commands a
high priority, changes in proliferation or
survival may predispose susceptible target
cells to replication-dependent damage and
subsequent neoplastic transformation.
Issues remaining to be addressed include
the elucidation of the molecular mecha-
nism(s) of enhanced cytokine response and
clarification of the impact of increasing, by

as much as 2-fold, the size of the replicating
cell population that is potentially targeted in
the development of AML. Characterization
of the respective roles of proliferation and
differentiation in the regulation of HPC
will provide a biological basis for improving
predictions of the risk of leukemogenesis
secondary to benzene exposure.
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